LA FISICA Y TU
Mecánica
Hidrostática e Hidrodinámica
Termodinámica
Album de fotos
Experimentos
Termodinámica

La termodinámica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.
El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.
Al hablar de termodinámica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.
Previo a profundizar en este tema de la termodinámica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí.
La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura.
La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.

Ley Cero de la Termodinámica
Establece que si dos sistemas, "A" y "B", estan en equilibrio termodinámico, y "B" esta a su vez en equilibrio termodinámico con un tercer sistema "C", entonces "A" y "C" se encuentran en equilibrio térmico. Este principio fundamental se enunció formalmente luego de haberse formulado las otras tres leyes de la termodinámica, por ello se llama Ley Cero.
Como consec uencia de ésta ley se puede afirmar que dos objetos en equilibrio térmico entre sí estan a misma temperatura, y si tienen temperaturas diferentes n estan en equilibrio térmico entre sí.

Primera Ley de la Termodinámica
Esta ley se expresa como:

imagen
Q= Calor

E int= energía interna

W= trabajo
Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)
Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.
Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.


Procesos reversibles e irreversibles
Consideremos un sistema típico en equilibrio termodinámico: una masa m de gas real encerrado en un dispositivo cilíndrico (cuyas paredes laterales son aislantes térmicos mientras que el piso es conductor) y un émbolo que mantiene un volumen V, dentro del cual el gas se encuentra a una presión p y una temperatura T, los que se mantienen constantes con el tiempo. En la base del cilindro tenemos una fuente de calor para mantener la temperatura.

Podemos variar de muchas maneras a otro estado de equilibrio en el cual la temperatura T sea la misma pero su volumen se reduzca a la mitad. Analicemos dos casos extremos.

I. Hacemos bajar el émbolo muy rápidamente y se espera que se establezca el equilibrio. Durante el proceso el gas es turbulento y su presión y temperatura no están bien definidas. Los estados intermedios en el cual se desarrolla el proceso no son de equilibrio. El proceso se denomina irreversible.

II. Si hacemos bajar el émbolo muy lentamente (despreciando a la fricción), la temperatura varía muy poco mientras que las otras variables termodinámicas estarán bien definidas a medida que vayan cambiando. Los cambios serán infinitesimales de manera que pueda invertirse la trayectoria mediante un cambio diferencial en su medio ambiente. Este proceso se denomina reversible.
Este caso no es solamente reversible sino también isotérmico ya que suponemos una variación infinitesimal (dT ).

También podríamos reducir el volumen adiabáticamente sacando al cilindro de la fuente de calor. Este proceso también puede ser reversible o irreversible dependiendo de la manera en que movamos al émbolo. Pero DU y DT no serán los mismos para los procesos adiabáticos reversibles que para los irreversibles.


Segunda Ley de la Termodinámica
La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.

En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinámica, que tiene dos enunciados equivalentes:

Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.

Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.

Además de la primera y segunda leyes de la termodinámica, existen la ley cero y la tercera ley de la termodinámica.


Ciclos Termodinámicos
Todas las relaciones termodinámicas importantes empleadas en ingeniería se derivan del primer y segundo principios de la termodinámica. Resulta útil tratar los procesos termodinámicos basándose en ciclos: procesos que devuelven un sistema a su estado original después de una serie de fases, de manera que todas las variables termodinámicas relevantes vuelven a tomar sus valores originales. En un ciclo completo, la energía interna de un sistema no puede cambiar, puesto que sólo depende de dichas variables. Por tanto, el calor total neto transferido al sistema debe ser igual al trabajo total neto realizado por el sistema.

Un motor térmico de eficiencia perfecta realizaría un ciclo ideal en el que todo el calor se convertiría en trabajo mecánico. El científico francés del siglo XIX Sadi Carnot, que concibió un ciclo termodinámico que constituye el ciclo básico de todos los motores térmicos, demostró que no puede existir ese motor perfecto. Cualquier motor térmico pierde parte del calor suministrado. El segundo principio de la termodinámica impone un límite superior a la eficiencia de un motor, límite que siempre es menor del 100%. La eficiencia límite se alcanza en lo que se conoce como ciclo de Carnot.

Ciclo de Carnot
El ciclo de Carnot es un ciclo termodinámico ideal reversible entre dos fuentes de temperatura, en el cual el rendimiento es máximo.
Una máquina térmica que realiza este ciclo se denomina máquina de Carnot. Estas máquinas trabajan absorbiendo una cantidad de calor Q1 de la fuente de alta temperatura y cede un calor Q2 a la de baja temperatura produciendo un trabajo sobre el exterior.
imagen
El rendimiento viene definido, como en todo ciclo, por:
imagen
Como todos los procesos que tienen lugar en el ciclo ideal son reversibles, el ciclo puede invertirse. Entonces la máquina absorbe calor de la fuente fría y cede calor a la fuente caliente, teniendo que suministrar trabajo a la máquina. Si el objetivo de esta máquina es extraer calor de la fuente fría se denomina máquina frigorífica, y si es aportar calor a la fuente caliente bomba de calor.
El ciclo de Carnot consta de 4 procesos:

a) Expansión isotérmica (Proceso a al b diagrama)

b) Expansión adiabática (Proceso b al c diagrama)

c) Compresión isotérmica (Proceso c al d diagrama)

d) Compresión adiabática (Proceso d al a diagrama)

GRÁFICA DEL CICLO DE CARNOT
imagen
Expansión isotérmica (Proceso a al b diagrama)

a) Un gas se encuentra al mínimo volumen del ciclo y a temperatura T1 de la fuente caliente. En este estado, se transfiere calor al cilindro desde la fuente de temperatura T1, haciendo que el gas se expanda. Al expandirse, el gas se enfría, pero absorbe calor de T1 y mantiene su temperatura constante. Al tratarse de un gas ideal, al no cambiar la temperatura tampoco lo hace su energía interna, y a partir de la 1ª ley de la termodinámica vemos que todo el calor transferido es convertido en trabajo:
imagen
En este proceso, la entropía aumenta: por definición, una variación de entropía viene dada por el cociente entre el calor transferido y la temperatura de la fuente en un proceso reversible:
imagen
Como el proceso es efectivamente reversible, la entropía aumentará
imagen

Expansión adiabática (Proceso b al c diagrama)

b) La expansión isoterma termina en un punto tal que el resto de la expansión pueda realizarse sin intercambio de calor. A partir de aquí el sistema se aísla térmicamente, con lo que no hay transferencia de calor con el exterior. Esta expansión adiabática hace que el gas se enfríe hasta alcanzar exactamente la temperatura T2 en el momento en que el gas alcanza su volumen máximo. Al enfriarse disminuye su energía interna, con lo que utilizando un razonamiento análogo al anterior proceso:
imagen
Esta vez, al no haber transferencia de calor, la entropía se mantiene constante:
imagen
Compresión isotérmica (Proceso c al d diagrama)

c) Se pone en contacto con el sistema la fuente de calor de temperatura T2 y el gas comienza a comprimirse, pero no aumenta su temperatura porque va cediendo calor a la fuente fría. Al no cambiar la temperatura tampoco lo hace la energía interna, y la cesión de calor implica que hay que hacer un trabajo sobre el sistema:
imagen
Al ser el calor negativo, la entropía disminuye:
imagen
Compresión adiabática (Proceso d al a diagrama)

d) Aislado térmicamente, el sistema evoluciona comprimiéndose y aumentando su temperatura hasta el estado inicial. La energía interna aumenta y el calor es nulo, habiendo que comunicar un trabajo al sistema:
imagen


POR MEDIO DE IMÁGENES OBSERVEMOS EL CICLO DE CARNOT
imagen


Tercera Ley de la Termodinámica
La tercera ley tiene varios enunciados equivalentes:

"No se puede llegar al cero absoluto mediante una serie finita de procesos"

Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.

"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".

"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".